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Abstract 

Traditional correlation coefficients could not accommodate the more complexed dependency between 

markets. Copula modes are the alternative way to trace the dependence among markets. We use three 

major stock market indexes ranged from 2000 to 2020 to model the dependence between market indexes. 
Our sample period covers three major extreme events; therefore, it is quite suitable for copula modelling 

the dependence across the border. We compare the bivariate copulas to multivariate copulas in 
modelling the dependency. Our results show that multivariate vine copula model could choose much 

different pair copulas from bivariate copula. Our finding has a very important implication to portfolio 

manager and risk manager.   
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1. Introduction 

Traditional way to model the relation between variables is correlation which measures the dependency among 

variables. The crucial assumption for this measurement is normal or student-t distribution. The model based on this 

normal distribution did not perform well during crisis and extreme market conditions. Numerous empirical 

applications have proved that multivariate normal/student-t distribution is not adequate in modelling dependency. 

Firstly, empirical marginal distributions are often skewed and heavy-tailed. Secondly, possibilities of extreme co-

movements cannot be explained by multivariate normal distribution. 

Copula is the solution for the above-mentioned problems. Any multivariate distribution can serve as a 

copula. Copulas make it possible to model marginal distributions and the dependence structure separately. Copulas 

give us a greater modeling flexibility. Based on a copula, we can get many multivariate distributions by choosing 

different margins. The traditional representations of dependence are based on the linear correlation coefficient 

which is limited to multivariate elliptical distributions. Copula dependencies are free of such limitations. The 

copula contains all the information regarding the dependence between random variables. A copula is invariant 

under strictly increasing transformations. Most traditional measures of dependence are measures of pairwise 

dependence. Copulas measure the dependence between all random variables. 

Our intention is to find out the dependency between major stock markets in the world especially when the 

world is more integrated since WTO that also allow openness of financial industry across the border. Instead of 

traditional dependence analysis, we apply more flexible method such as copulas to study the dependence among 

markets. More advanced copulas, like vine copulas, are also used to seek the better copula models to explain the 

dependency between markets.   

 

2. Financial Applications in Copulas 

2.1 Evolution of Copula Researches 

Hoeffding studied properties of multivariate distributions in 1940. Sklar(1959) used the term "copula" for the first 

time ever. There appeared earlier financial applications (Embrechts, McNeil and Straumann, 1999, 2002). The 
extension of the theory of copulas to allow for conditional dependence structure was proposed by Patton (2006). 

Starting from 2008, copulas are widely used in finance, economics, insurance, energy, hydrology, and survival 

analysis. 
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2.2 Financial Applications of Copula 

The main motivation for the use of copulas in finance comes from the growing body of empirical evidence that the 

dependence between many asset returns is non-normal. One important example of non-normal dependence is where 

two asset returns exhibit greater correlation during market downturns than during market upturns. The researches 

against 'copula normality' have amassed by Erb, et al. (1994), Longin and Solnik (2001), and Ang and Chen (2002), 

Ang and Bekaert 2002 Bae et al. 2003 among others. Since the publications of these researches, the copulas have 

been used for financial decision-making, in risk management, multivariate option pricing, portfolio decisions, credit 

risk, and studies of 'contagion' between financial markets. 

The first area of application of copulas in finance was risk management. Just like 'fat tails' or excess 

kurtosis in the distribution of a single random variable increases the likelihood of extreme events, the appearance of 

non-zero tail dependence increases the likelihood of joint extreme events. In derivatives markets, non-normal 

dependence has key pricing and trading implications. Any option contract with two or more 'underlying' assets will 

generally have a price that is influenced by both the strength and the shape of the dependence between the assets. 

Even options with just a single underlying asset may need copulas if the risk of default by the counter-party to the 

contract is perceived economically significant. These types of option are called ''vulnerable options". 

The booming market in credit derivatives, such as credit default swaps and collateralized debt obligations, 

and the fact that these assets usually entail numerous underlying sources of risks has led to vast interest in copulas 

for credit risk applications, e.g., Li (2000) and Giesecke (2004) among others. 

One of the most noticeable places where the dependence between risky assets influences financial 

decisions is in portfolio decisions. With quadratic utility and/or multivariate ellipticity, the optimal portfolio 

weights depend only upon the first two moments of the assets under consideration. However, as the joint 

distribution of asset returns is not elliptical or utility is not quadratic in wealth, the optimal portfolio weights will 

generally require a specification of all conditional distribution of returns. (Patton, 2004; Garcia and Tsafack, 2011). 

The current broad topic that has attracted attention from financial economists employing copula techniques 

is to investigate the financial 'contagion'. Financial contagion is an occurrence which crises occur in one market 

cause problems in other markets beyond the expected fundamental linkages between the markets. The problem in 

contagion research is that a baseline level of dependence between the markets must be found before it can be 

claimed that the dependence escalated during a period of crisis. 

From the point of portfolio and risk management perspective, understanding the dependence between asset 

returns is crucial. Our research intends to find out what kind of dependence between major indexes. We implement 

not only the bivariate copulas but also multivariate copulas to see whether or not the copulas selected would be 

different. The C vine and D vine copulas are implemented for the multivariate copulas.   

 

3. Copula Models and Methodology 

 
3.1 Traditional Dependence 

Pearson linear correlation coefficient, ρ, is a simple rudimentary linear concept and it describe dependence by a 

single number. There are several limitations for this correlation. First of all, non-linear transformation of variables 

changes correlation and it needs the existence of variances. High dependence though small amount of linear 

correlation coefficient is possible and it does not focus on extreme dependence.  

Kendall’s tau, τ, normalizes difference between number of concordant and discordant pairs. Spearman’s 

rank correlation is the correlation between ranks of data and it is not affected by extreme value. Other useful 

dependence measures between two variables are coefficients of low tail dependence and upper tail dependence, 

which are relevant to the concept of dependence in extreme values.  

Ang and Chen (2002) propose to calculate the threshold correlation between two variables when two asset 

returns are both falling or rising more than threshold value in the meantime. On the other hand, Christoffersen et al. 

(2013) use the reverse threshold correlation to provide another perspective by focusing on the negative correlation 

between two variables when one goes up and another goes down. 

 

3.2 Copula Models 

The definition of copulas is that a d-dimensional copula is a multivariate distribution whose marginals are all over 

(0, 1). Sklar (1959) suggests a general d-dimensional density h can be expressed for some copula density c. This is 

also known as Sklar's Theorem. Copulas allow us to depict the joint distribution with two step process. First step is 

to estimate the appropriate marginal distributions which in not necessarily from the same family. Next is to 

estimate dependence structure through appropriate copula functions which could be non-linear or tail dependence. 

There are two commonly used copulas. One is the elliptical copula that includes Gaussian and Student-t copulas. 
The other is Archimedean copula which contains Gumbel, Clayton, Frank, mixture copula and rotated copula.  

Assuming Kendall’s tau =0.7 (we will discuss it next session), we simulate contours for four types of 

copulas in figure 1 and they are Gaussian copula, Student-t copula (t-copula), Clayton copula and Gumbel copula. 

Of course, there are more copulas than we discuss here, we just discuss the most popular ones. In figure 1, x-axis  
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represents one dataset and y-axis is for the other one, e.g., x and y are two sets of asset returns respectively. The 

narrower area corresponds to higher degree of dependence. The tail areas are those in the lower left and the upper 

right regions. 

 

 
Figure 1: Four Couplas 

 

From figure 1, we can see the one of the major characteristics for Gaussian copula is dependency in the tails goes to 

zero. For student-t copula, there is no independency in the tails, according to figure 1, but the strength of 

dependence in the tail increases with (1) decreasing degrees of freedom (2) increasing correlation. Regarding the 

Clayton copula, the graph shows us that tail dependence in the lower tail and tail independence in the upper tail. 

The Gumbel copula has the opposite features as the Clayton copula. That means that the Gumbel copula has tail 

dependence in the upper tail and tail independence in the lower tail.  

For the bivariate case, a rich type of copula families is available and well-investigated (Joe 1997; Nelsen 

2006). However, in arbitrary dimension, the choice of adequate families is rather limited. The high-dimension 

(vine) copula was initially proposed by Joe (1996) and later discussed in detail by Bedford and Cooke (2002, 

2001), Kurowicka and Cooke (2006) and Aas et al. (2009). Thus vine copula allows for the specification of d(d-1 

)/2 bivariate copula of which the first d-1 are unconditional and the rest is conditional. The bivariate copulas 

involved do not have to belong to the same class. Since the decomposition is not unique, there exist many such 

iterative pair-copula constructions (PCC). To classify them Bedford and Cooke (2001, 2002) introduced the model 

called vine to help organize different PCC. 

 

4. Data and Empirical Findings 
 

4.1 Data 

The data set contains daily log returns of three major stock index which represents three major regions in the world. 

They are the S&P 500 (SP500), the UK FTSE 100 index (FTSE), and the Japanese Nikkei 225 (NIKKEI). The 

sample period ranges from January 1, 2000 to December 31, 2020. All the holidays in three countries without 

trading are excluded from the data set. Therefore, there are 4883 observations in our sample. The period covers the 

dot.com bubble burst, the 2008 financial crisis and onset of covid-19 pandemic. The data set cover the extreme 

events which could be explained by copula models. 

 

4.2 Explanatory Data Analysis 

We group our data into three groups, namely SP500-FTSE, SP500-NIKKEI and FTSE-NIKKEI, to investigate the 

dependence conditions between these markets. The first table using traditional correlations shows that SP500 has 

the strongest correlation with FTSE, followed by FTSE with NIKKEI. The weakest one is between SP500 and 

NIKKEI. It is obvious that US market has a stronger tie to the UK market than the Japanese market due to the 

tradition between the two nations. The weakest correlation between US and Japan is a surprise since Japan enjoys 

the tremendous trade surpluses. Figure 2 also demonstrates the distributions of the three market returns and its 

scatter plots. From the scatter plots, it indicates that there is a stronger evidence of dependence between SP500 and 

FTSE than other two pair countries. The numbers in the plot are Pearson coefficients of correlation. 
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SP500 FTSE NIKKEI 

 
Pearson 1 0.5867 0.1959 

SP500 Kendall 1 0.3672 0.1092 

 
Spearman 1 0.5065 0.1584 

 
Pearson 

 
1 0.3724 

FTSE Kendall 
 

1 0.2018 

 
Spearman 

 
1 0.2921 

 
Pearson 

  
1 

NIKKEI Kendall 
  

1 

  Spearman 
  

1 
Table 1: Correlation Matrix 

 

 
Figure 2: Scatter and Distribution Plot 

 

 
Figure 3: K-plot 

 

Figure 3 is Kendall’s plot (K-plot) for bivariate copula data of the three groups. the K-plot considers two quantities: 

First, the ordered values of the empirical bivariate distribution function H which is shown as the vertical axis. The 

second one is W in the horizontal axis. W are the expected values of the order statistics from a random sample of 

size N of the random variable W of the paired data. K-plots can be seen as the bivariate copula equivalent to QQ-

plots. If the points of a K-plot lie approximately on the diagonal H = W, then the pair data are approximately 

independent of each other. Any deviation from the diagonal line points towards dependence. In case of positive 

dependence, the points of the K-plot should be located above the diagonal line, and vice versa for negative 

dependence. The larger the deviation from the diagonal, the stronger is the degree of dependency. In our case, 

figure 3 shows that most of time, the three groups have a strong positive dependence, with some negative 

dependence. The k-plot also proves that the strongest positive dependence is between SP500 and FTSE and the 

weakest one is between SP500 and NIKKEI. The negative dependence between all of the three markets is weak.  

 

4.3 Empirical Findings 

The bivariate copula selection is conducted first. Table 2 shows that using BIC statistics as criteria to select the 

appropriate copula for each group. We only demonstrate the chosen copula related statistics in table 2. Student-t 

copula is picked as the best copula for all three groups. That is not a surprised result since the patterns in the scatter 

plot for each group are similar in some way. The empirical taus computed from the actual data are quite close the 

theoretical Student-t copula taus, which means the Student-t copula fits the data quite well.   
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Value SP500-FTSE SP500-NIKKEI FTSE-NIKKEI 

Copula Chosen Student-t Student-t Student-t 

Tau 0.3668 0.1091 0.2033 

Empirical Tau 0.3672 0.1092 0.2018 

Log-likelihood 1139.919 180.49 356.366 

AIC -2275.838 -356.98 -708.733 

BIC -2262.851 -343.993 -695.746 

Table 2 Bivariate Copula (BIC) 

 

Furthermore, we would like to find out which family fits the data better than the other families. A goodness-of-fit 

score for each bivariate copula family under consideration is calculated by the Vuong and the Clarke tests which is 

used for bivariate copula selection. For each feasible pair of copulas families, the Vuong and the Clarke tests decide 

which of the two families fits the given data best and assigns a score, positive number for pro or negative number 

for contra a copula family. From table 3, the test scores show that student-t is the first choice to fit the paired 

dataset across three groups unanimously. The second choice would be Grumbel copula for all groups. Generally 

speaking, the Gumbel copula score is much lower than student-t, except for the SP500-FTSE paired data. This 

complies with the scatter plot which shows that there is some degree of strong positive dependence between SP500 

and FTSE, which is one of the features of Gumbel copula, i.e., there is a tail dependence in the upper tail for 

Gumbel copula.  

 

      SP500-FTSE SP500-NIKKEI FTSE-NIKKEI 

Copulas Vuong Clarke Vuong Clarke Vuong Clarke 

Gaussian copula 2 0 -5 -7 1 -4 

Student-t copula 8 8 8 8 8 8 

Clayton copula  -4 -6 -1 -1 1 -2 

Gumbel copula 5 3 3 3 1 2 

Frank copula -4 3 -5 -3 -4 2 

Joe copula  -4 -4 -2 -2 -8 -6 

Table 3 Goodness-of-Fit Test: Vuong and Clarke tests scores 

 

The fitting process maximum log-likelihood is also carried out to select the proper copulas. According to table 4, 

the first choice is still student-t copula for all three groups and Grumbel copula is the second choice except the 

FTSE-NIKKEI group.  

 

  SP500-FTSE SP500-NIKKEI FTSE-NIKKEI 

Gaussian copula 871.7 75 273.6 

Student-t copula 1140 180.5 356.4 

Gumbel copula 946.3 99.03 263.6 
Table 4 Fitting with Maximum Log-likelihood 

 

We also apply high dimension vine, mainly C vine and D vine to fit our multivariate data set to see whether or not a 

better result will be generated. The sequential estimates of the pair-copula parameters are computed. In the 

meantime, we also estimate these parameters using a joint maximum log-likelihood method to see if there is a 

difference. The results show that two methods almost generate the same estimates. The numbers are not reported 

here due to limited space. Each C vine and D vine modelling are performed. To find out the better fitting vine 

copula model for our data set, we conduct a Vuong test by comparing both models. All the results are demonstrated 

in table 5.  

 

 
SP500-FTSE SP500-NIKKEI FTSE-NIKKEI 

C Vine Copula Student-t copula Student-t copula Survival Joe-Clayton copula 

D Vine Copula Student-t copula Independence copula Student-t copula 

  statistic p-value   

CDVine Vuong Test 4.82 6.71E-07   

Table 5 C and D Vine Modelling Results 

 

When all three of the markets are considered together, instead of modelling each pair independently, the results are 

different. For SP500-FTSE and SP500-NIKKEI, both C Vine copula and D vine copula have selected Student-t 

copula. But it is quite different from previous bivariate copulas modelling when we select copulas. The C vine 

copula chose survival Joe-Clayton copula for FTSE-NIKKEI and D vine chose independence copula for SP500- 
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NIKKEI. Therefore, there exists a significant difference in choosing proper copulas for our data set between C vine 

and D vine copulas. Which one is better? The result of CDVine Vuong test shows that C vine copula is preferable 

to D vine copula since p-value is almost zero.  

 

5. Conclusions 

We are interested in how the major world stock markets are influencing one another. Since the traditional 

correlation could not explain the dependence between markets. The three major stock markets indexes are used to 

trace the dependency between the market indexes. First of all, there are indeed a relatively strong positive 

dependence between the markets from our data set ranged from year 2000 to 2020. The bivariate copula model is 

first to apply in selecting the better copula to demonstrate the dependency among countries. For these three market 

indexes, the student-t copula is the only best one to explain the dependency. But when multivariate copula models 

are adopted, the game has changed. Student-t copula is still the better choice but the dependence relationship 

between UK and Japanese markets could be explained by survival Joe-Clayton copula in C vine copula, but D vine 

chose student-t copula for FTSE-NIKKEI. The D vine copula even think there is an independence copula for 

SP500-NIKKEI but C vine chose student-t copula.  

Our findings have demonstrated that multivariate copula models could be vital for modern portfolio 

management and risk management since both are related to multiple assets. There are limitations in our research. 

First, our study only covers three markets. Future research could investigate more markets dependency. The market 

opening time may play a role in determining the dependence, e.g., which market opens earlier than other markets. 

This issue could be addressed in the future research. 
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